Algebraic soft- and hard-decision decoding of generalized reed-solomon and cyclic codes

نویسنده

  • Alexander Zeh
چکیده

and Résumé T challenges in algebraic coding theory are addressed within this dissertation. Œe €rst one is the ecient hardand so‰-decision decoding of Generalized Reed–Solomon codes over €nite €elds in Hamming metric. Œe motivation for this more than 50 years old problem was renewed by the discovery of a polynomial-time interpolation-based decoding principle up to the Johnson radius by Guruswami and Sudan at the end of the 20th century. First syndrome-based error/erasure decoding approaches by Berlekamp–Massey and Sugiyama–Kasahara–Hirasawa–Namekawa for Generalized Reed–Solomon codes were described by a Key Equation, i.e., a polynomial description of the decoding problem. Œe reformulation of the interpolation-based approach in terms of Key Equations is a central topic of this thesis. Œis contribution covers several aspects of Key Equations for Generalized Reed–Solomon codes for both, the hard-decision variant by Guruswami–Sudan, as well as for the so‰-decision approach by KöŠer–Vardy. Œe obtained systems of linear homogeneous equations are structured and ecient decoding algorithms are developed. Œe second topic of this dissertation is the formulation and the decoding up to lower bounds on the minimum Hamming distance of linear cyclic block codes over €nite €elds. Œe main idea is the embedding of a given cyclic code into a cyclic (generalized) product code. Œerefore, we give an extensive description of cyclic product codes and code concatenation. We introduce cyclic generalized product codes and indicate how they can be used to bound the minimum distance. Necessary and sucient conditions for lowest-rate non-primitive binary cyclic codes of minimum distance two and a sucient condition for binary cyclic codes of minimum distance three are worked out and their relevance for the embedding-technique is outlined. Furthermore, we give quadratic-time syndrome-based error/erasure decoding algorithms up to some of our proposed bounds. D dé€s de la théorie du codage algébrique sont traités dans ceŠe thèse. Le premier est le décodage ecace (dur et souple) de codes de Reed–Solomon généralisés sur les corps €nis en métrique de Hamming. La motivation pour résoudre ce problème vieux de plus de 50 ans a été renouvelée par la découverte par Guruswami et Sudan à la €n du 20ème siècle d’un algorithme polynomial de décodage jusqu’au rayon Johnson basé sur l’interpolation. Les premières méthodes de décodage algébrique des codes de Reed–Solomon généralisés faisaient appel à une équation clé, c’est à dire, une description polynomiale du problème de décodage. La reformulation de l’approche à base d’interpolation en termes d’équations clés est un thème central de ceŠe thèse. CeŠe contribution couvre plusieurs aspects des équations clés pour le décodage dur ainsi que pour la variante décodage souple de l’algorithme de Guruswami–Sudan pour les codes de Reed–Solomon généralisés. Pour toutes ces variantes un algorithme de décodage ecace est proposé. Le deuxième sujet de ceŠe thèse est la formulation et le décodage jusqu’à certaines bornes inférieures sur leur distance minimale de codes en blocs linéaires cycliques. La caractéristique principale est l’intégration d’un code cyclique donné dans un code cyclique produit (généralisé). Nous donnons donc une description détaillée du code produit cyclique et des codes cycliques produits généralisés. Nous prouvons plusieurs bornes inférieures sur la distance minimale de codes cycliques linéaires qui permeŠent d’améliorer ou de généraliser des bornes connues. De plus, nous donnons des algorithmes de décodage d’erreurs/d’e‚acements [jusqu’à ces bornes] en temps quadratique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Soft-Decision Decoding of Reed–Solomon Codes

A polynomial-time soft-decision decoding algorithm for Reed–Solomon codes is developed. This list-decoding algorithm is algebraic in nature and builds upon the interpolation procedure proposed by Guruswami and Sudan for hard-decision decoding. Algebraic soft-decision decoding is achieved by means of converting the probabilistic reliability information into a set of interpolation points, along w...

متن کامل

Algebraic Soft-Decision Decoding of Reed-Solomon Codes Using Bit-level Soft Information

The performance of algebraic soft-decision decoding (ASD) of Reed-Solomon (RS) codes using bit-level soft information is investigated. Optimal multiplicity assignment strategies (MAS) of ASD with infinite cost are first studied over erasure channels and binary symmetric channels (BSC). The corresponding decoding radii are calculated in closed forms and tight bounds on the error probability are ...

متن کامل

Title of dissertation: PERFORMANCE ANALYSIS OF ALGEBRAIC SOFT-DECISION DECODING OF REED-SOLOMON CODES

Title of dissertation: PERFORMANCE ANALYSIS OF ALGEBRAIC SOFT-DECISION DECODING OF REED-SOLOMON CODES Andrew Duggan, Masters of Science, 2006 Thesis directed by: Professor Alexander Barg Department of Electrical and Computer Engineering We investigate the decoding region for Algebraic Soft-Decision Decoding (ASD) of Reed-Solomon codes in a discrete, memoryless, additive-noise channel. An expres...

متن کامل

Efficient Interpolation and Factorization in Algebraic Soft-Decision Decoding of Reed-Solomon Codes

Algebraic soft-decision decoding of Reed-Solomon codes delivers promising coding gains over conventional hard-decision decoding. The main computational steps in algebraic soft-decoding (as well as Sudan-type list-decoding) are bivariate interpolation and factorization. We discuss a new computational technique, based upon re-encoding and coordinate transformation, that significantly reduces the ...

متن کامل

The q-ary image of some qm-ary cyclic codes: Permutation group and soft-decision decoding

Using a particular construction of generator matrices of the -ary image of -ary cyclic codes, it is proved that some of these codes are invariant under the action of particular permutation groups. The equivalence of such codes with some two-dimensional (2-D) Abelian codes and cyclic codes is deduced from this property. These permutations are also used in the area of the soft-decision decoding o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013